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Abstract— In this paper we present a statistical analysis 

technique for classifying encrypted network traffic.  The 

technique uses the fast orthogonal search (FOS) algorithm to 

select a subset of features with discriminative power from a large 

set of features derived from the data. A k-nearest neighbor 

(kNN) classifier was then used to classify the network traffic 

using the features selected by FOS.  The FOS algorithm selected 

a 12-feature subset from a set of 2,839 features. A kNN classifier 

using these 12 features has 106 fewer errors than a kNN using an 

arbitrary 44-feature set and there was an 81% reduction in 

computation time for classification. 

Keywords— Network Traffic Classification; Network Traffic 

Feature Selection, Fast Orthogonal Search 

I. INTRODUCTION

Most organizations allow encrypted traffic on their 
networks so that employees can perform transactions such as 
personal banking. In addition to legitimate use of encrypted 
network traffic organizations may inadvertently be permitting 
non-authorized or malicious traffic in disguise consisting of 
prohibited protocols, unauthorized webpages or malicious file 
types. Classification of encrypted traffic, whether legitimate or 
malicious, introduces many unique challenges, especially for 
cases where the protocols and port numbers are deliberately 
obfuscated to misrepresent the type of data being transferred.  

Current network classification techniques include: 
port/protocol pairing, signature analysis, deep packet 
inspection and statistical anomaly analysis. Blocking port 
numbers and IP-addresses has become ineffective as most 
subversive applications and many commercial applications 
deliberately use non-standard ports to by-pass firewalls [1]. 
The success of deep packet inspection when used for encrypted 
traffic analysis has been diminishing [2]–[4]. Deep packet 
inspection is computational expensive and not feasible for high 
volume analysis [3].  

Recent research has focused on statistical classification 
approaches which do not require access to the plain-text 
content of packets and have shown success when confronted 
with protocol obfuscation, encapsulation, and encryption [3]. 
Statistical analysis approaches define the characteristics of 
network traffic using sets of features [5] and use these features 
to classify the network traffic. With hundreds of traffic features 
that can be used in classification, it becomes imperative to 
select a subset of features that has predictive value.  

Features have been selected manually, exhaustively or 
using machine learning techniques. Manual selection of 
features is time consuming and difficult to optimize. 
Exhaustive searches for feature sets are computationally 
infeasible due to the huge number of feature set combinations. 
Machine learning techniques can lead to optimizing the 
classifier for the training data with a poor ability to classify 
unseen data [6]. 

The objective of this research was to develop a general-
purpose method of selecting feature subsets for encrypted 
traffic classification. In this research, a primary feature set of 
44 features was extracted from network data using NetMate 
[7].  Additional features were derived from this primary feature 
set by taking the sum, difference or vector-products of the 
primary feature vectors. The fast orthogonal search (FOS) 
algorithm was used to select a subset of features from this 
expanded feature set for the application of classifying Dropbox 
[8] traffic. Then a k-nearest neighbour classifier (kNN) was
used to classify previously unseen testing data.  The prediction
accuracy and area under the receiver-operating-curve (AUC)
were used to compare the classification accuracy of the kNN
classifier using: the feature subset selected by FOS; a set of
arbitrary features; and a feature subset selected with the best-
first algorithm.

Section II reviews the theory of network traffic analysis. 
Section III provides background knowledge of feature 
selection, including a brief description of the fast orthogonal 
search algorithm (FOS) and the best first (BeF) algorithm. In 
Section IV, the k nearest neighbour classifier is described. 
Section V describes the method of using the FOS algorithm to 
select features with predictive power. Section VI concludes this 
paper. 

II. TRAFFIC CLASSIFICATION BACKGROUND

Due to the ever-increasing volume of encrypted network 
traffic it is impossible to ignore encrypted network traffic 
classification within network traffic analysis.  There has also 
been an increase in encrypted local area network (intranet) 
traffic as most organizations have migrated to network 
administration tools that use encryption for security. Wright et 
al. [9] assessed this growing use of encrypted protocols and 
noted that while its use has greatly enhanced network security 
it has equally hindered traffic analysis.  



 

 

Encrypted traffic naturally lends itself to statistical analysis, 
since access to the packet contents is restricted and only the 
statistical features of the packet are available [9].  A number of 
techniques of classification of encrypted traffic have been 
published. [10], [11], [12], [3], [13]. 

Alshammari et al. [14] used three different machine-
learning algorithms to classify Skype [15] traffic flows from 
non-Skype traffic flows, then investigated the number of 
features each algorithm used to build its classification model. 
This work did not attempt to find a general algorithm for 
feature selection and only used 22 candidate features. 

III. FEATURE SELECTION BACKGROUND 

A key requirement for statistical classification is the 
appropriate selection of a minimal set of features with 
predictive value. As it is not intuitively obvious which features 
have predictive value, it is desirable to have the feature selector 
search as large a feature space as possible. This paper proposes 
a systematic approach to feature selection, using the FOS 
algorithm for the classification of encrypted network traffic. 

A. The Fast Orthogonal Search 

The fast orthogonal search (FOS) algorithm [16] is a 
greedy algorithm that builds a parsimonious functional 
expansion of a time series using a subset of an arbitrary set of 
candidate functions that most significantly reduce the mean-
squared error (MSE) of the functional expansion.  The 

functional expansion of a signal  y n   in terms of the arbitrary 

candidate function  mp n  is given by: 
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where 
ma  are the model weights,  e n   is the residual error 

and 1M    is the number of terms fitted out of the set of P 
available candidates.

 

The FOS algorithm performs an implicit orthogonalization 
of the candidate functions and creates an internal functional 
expansion using this orthogonal basis given by:  
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where  mw n  are the orthogonal functions and 
mg  their 

respective weights.   

FOS creates the model term-by-term by testing each 
candidate as the next model term and selecting the candidate 
with the maximum MSE reduction as the next model term.  
FOS continues adding terms to the functional expansion until: 

- An arbitrary maximum number of terms have been 
fitted 

- The MSE reduction of the term to be added is less than 
the MSE reduction of adding white noise 

- The MSE reduction of the term to be added is less than 
a percentage of the energy of the signal 

- An arbitrary percentage of the energy of the signal has 
been fitted. 

Additional details of the FOS algorithm can be found in [16]. 

FOS has been successfully used in feature selection for 
classification in medical applications. [17], [18].  When using 
FOS as a feature selector, a training set of network flows with 

known classes are required.  The target function   1y n   for 

in-class flows and   1y n    for out-of-class flows and the 

candidate functions  mp n  are the candidate features of each 

flow.  The FOS algorithm will choose a subset of the features 
that reduces the MSE between the functional expansion in (1) 

and the target function  y n . 

B. Best First Search 

The Best First search algorithm (BeFS) [19] [20] is a 
graph-based search algorithm.  Each node of the search 
represents a subset of the candidate features. Initially, each 
feature is assigned its own node. The children of these nodes 
are subsets with two features: the parent node feature and in 
turn each of the other features. The third level children have 
subsets of three features. Similar to the FOS algorithm, the 
BeFS is a greedy search algorithm, and at each step it will 
choose the best of all explored nodes within the space. The 
BeFS algorithm gives an efficient algorithm to search the huge 
number of feature subsets without performing an exhaustive 
search. 

The BeFS algorithm computes the pairwise correlation 
between all the features in the graph and the correlation 
between the class vector and the features in the graph.  The 
correlation between two feature vectors, f1 and f2, is given by  
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where 
1f  and 

2f  are the average values of the features, and 

1f
  and 

2f
  are the standard deviations of the features and N 

is the number of flows in the vector. The correlation between a 

feature and the class vector 
fcr  can be calculated using the 

class vector for f2 in (3) 

Given a subset S of k features, the merit of the given subset 
can be calculated in terms of its correlation measures as 
follows [21]: 
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where, k  is the number of features, 
fcr  is the average value of 

all feature-classifier correlations, and 
ffr  is the average of all 

feature-feature correlations. 

Note that the merit 
SkM  increases when the features are 

highly correlated to the class vector. The merit also increases 
when the correlation between the features decreases. It is 
generally accepted that features highly correlated to the class 
but not strongly correlated to each other result in high 
classification accuracy. 



 

 

IV. K-NN CLASSIFIER 

The k nearest neighbour (kNN) classifier is a method for 
classifying data based on a distance measure between the 
sample to be classified and the k nearest neighbors in an 
exemplar set [22]. There is an expectation that members of a 
given class will tend to form a natural cluster in the feature 
space while being separated from points of different classes. 
The kNN algorithm typically uses the Euclidean distance or the 
correlation coefficient as its distance measure. 

The Euclidean distances between the data being classified 
and the training set exemplars are given by:  
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where 
testf  is the test feature vector, 

jf  is the jth training 

feature vector, i is the feature vector index, and M is the total 
number of features in the vector. 

In this work, the distance measure is the sum of the 
reciprocal of the k=3 smallest Euclidean distances as given by:  
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where T(j) = +1 for distances to in-class training data, T(j) = -1 
for distances to out-class training data and ED(j) are the 
Euclidean distances between the data being classified and the 
three closest exemplars. If C ≥ 0 the data is predicted to be in 
class; and if C < 0 then the data is predicted to be out of class. 

V. METHODOLOGY 

This research developed a systematic feature selection 
algorithm using the FOS algorithm to select a subset of 
features with predictive values. This method consists of three 
phases: collection and preparation of data; feature selection; 
and validation of the predictive value of the selected feature 
subsets.  

A. Collection and Preparation of Data 

The first step of the feature selection process is the 
collection of two sets of network traffic data: a training set and 
a testing set. In this research the training data was captured 
using tcpdump [23] from a typical university network over a 24 
hour period, and the test data was captured from the same 
network over a 24 hour period 3 days later. From these raw 
captures, encrypted traffic was extracted by filtering only 
traffic originating from or terminating on port 443. 

For this research we used an open source tool NetMate 
(Network Measurement and Accounting System) [7] to 
generate network traffic flows from raw packet data. Flows are 
defined in NetMate using 5-tuple keys consisting of source IP 
address, destination IP address, transport protocol, source port, 
and destination port. This research examined bidirectional 
transmission control protocol (TCP) and user datagram 
protocol (UDP) flows where the forward direction was 
determined by the first observed packet of the flow. The 
termination of TCP flows was either a proper connection 
closure or a flow timeout, and the termination of UDP flows 
was defined by a flow timeout. NetMate also defines sub-flows 

as a means of delineating periods of inactivity of 1s or more 
within a flow. 

Dropbox traffic was chosen as the type of encrypted traffic 
to test this methodology. During the collection of data for this 
experiment it was observed that each time a Dropbox session is 
initiated between the local user and a Dropbox server, one of 
the initiation packets contained the text string ‘dropbox’ in the 
unencrypted content. Note, dropbox flows no longer contain 
this text string so the true class of the flow must be determined 
from the data.  

An open source program called network grep (ngrep) [24] 
was used to extract all packets that contained the string 
‘dropbox’ and a list of remote IP addresses was compiled from 
these packets. The network flows associated with the remote 
addresses attributed to the Dropbox server comprised the in-
class set. Network flows that were not associated with these 
remote addresses comprised the outclass set. This analysis was 
performed independently on both the training and testing data 
sets. 

Over the 24-hour period that the training data was gathered 
there were approximately 106,000 inclass flows and 2,945,000 
outclass flows. The outclass flows were randomly sorted, and 
the total number of flows was reduced to equal the number of 
in-class flows. By setting an equal number of in-class and 
outclass instances, any sample size bias was eliminated during 
feature selection and classification.  

B. Computing Flow Features 

Statistical features for each flow were generated using 
packet-processing modules provided by netAI [25].  The 
features measure properties of the flow such as packet lengths, 
packet volumes, duration and time between the arrival of 
packets.  The primary feature set consists of thirty-eight 
features from netAI and 6 features computed separately which 
represent the traffic burstiness.   

The abbreviations and descriptions of these 44 features are 
shown in Table I below. The network protocol (TCP, UDP, 
etc) is the first feature (Line 1) called proto. The number of 
packets and bytes in the forward and reverse directions are 
given by total_fpackets, total_fvolume, total_bpackets and 
total_bvolume respectively (Lines 2-5). The minimum, mean, 
maximum and standard deviation of the forward and backward 
packet lengths are the next features (Lines 6-13). There are 
eight features measuring the minimum, maximum, mean and 
standard deviation of the packet inter-arrival times (Lines 14-
21).  Nine features characterize the duration, active and idle 
times of the subflows (Lines 22-30). The mean number of 
packets and mean number of bytes in subflows are the next 
four features (Lines 31-34). The number of packets in each 
flow with a PUSH Flag enabled in the forward and backward 
directions are represented by fpsh_cnt and bpsh_cnt (Lines 35 
and 36). The length of the forward and backwards header are 
respectively total_fhlen and total_bhlen (Lines 37 and 38). The 
last 6 features in represent calculated values for the burstiness 
of the traffic (Lines 39-44). These features were derived by 
dividing total_fpackets, total_fvolume, total_bpackets, 
total_bvolume, mean_fpktl and mean_bpktl respectively by 
Mean Active Time. 



 

 

TABLE I.   PRIMARY FEATURE SET 

 
Feature Abbreviation Feature Description 

1 proto Protocol 

2 total_fpackets Number of Packets in forward direction 

3 total_fvolume Number of Bytes in forward direction 

4 total_bpackets Number of Packets in backward direction 

5 total_bvolume Number of Bytes in backward direction 

6 min_fpktl Min forward packet length 

7 mean_fpktl Mean forward packet length 

8 max_fpktl Max forward packet length 

9 std_fpktl STD of forward packet length 

10 min_bpktl Min backward packet length 

11 mean_bpktl Mean backward packet length 

12 max_bpktl Max backward packet length 

13 std_bpktl STD  of backward packet length 

14 min_fiat Min forward inter-arrival time 

15 mean_fiat Mean forward inter-arrival time 

16 max_fiat Max forward inter-arrival time 

17 std_fiat STD  of forward inter-arrival times 

18 min_biat Min backward inter-arrival time 

19 mean_biat Mean backward inter-arrival time 

20 max_biat Max backward inter-arrival time 

21 std_biat STD  of backward inter-arrival times 

22 duration Duration of Flow 

23 min_active Min active time 

24 mean_active Mean active time 

25 max_active Max active time 
26 std_active STD of active time 

27 min_idle Min idle time 

28 mean_idle Mean idle time 

29 max_idle Max idle time 

30 std_idle STD idle time 

31 sflow_fpackets Mean number packets in a forward sub-flow 

32 sflow_fbytes Mean number bytes in a forward sub-flow 

33 sflow_bpackets Mean number packets in a backward sub-flow 

34 sflow_bbytes Mean number bytes in a backward sub-flow 

35 fpsh_cnt Push count in forward direction 

36 bpsh_cnt Push count in backward direction 

37 total_fhlen Total forward header length 

38 total_bhlen Total backward header length 
39 total_fpacket_rate Forward Packet Burstiness 
40 total_fvolume_rate Forward Volume Burstiness 
41 total_bpackets_rate Backward Packet Burstiness 
42 total_bvolume_rate Backward Volume Burstiness 
43 mean_fpktl_rate Mean Forward Packet Length Burstiness 
44 mean_bpktl_rate Mean Backward Packet Length Burstiness 

 
The collection of network traffic, construction of flows, and 

classification of the training data is shown in Fig. 1. This 
method was applied to both the training and testing data, 
resulting in four distinct sets, consisting of in-class and out-
class files for both the training and testing sets respectively. 

VI. FEATURE SELECTION 

A vector of the values of each feature (e,g, total_fpackets) 

for all N data flows is used as the candidate FOS function 

 mp n  in (1).  The target vector  y n  is set to +1 for in-class 

and -1 for out-class flows. The FOS algorithm is run and it 

selects a subset of M features that have predictive value from 

the set of C candidate features. The FOS algorithm stops 

selecting features when adding a feature reduces the MSE no 

more than adding a noise term, the MSE is below a threshold, 

an arbitrary number of features have been fitted or fitting the 

term does not reduce the MSE by an arbitrary percentage of 

the initial energy in  y n .  

Initially, FOS is used to select a subset of predictive features 

from the primary set of 44 features listed in TABLE I.  

Additional candidate features were derived from the primary 

feature set and FOS was then used to select features with 

predictive value from this larger feature set. 
The derived features include the sum, difference and vector 

product of the primary features. The sum features are the sum 

of two features given by  

     i a bp n p n p n   (7) 

where  ap n  and  bp n  are two of the primary features, 

 ip n  is the derived sum feature and i  is an unique integer 

identifier for the new candidate feature.  Similarly, the 

difference features are given by  

     i a bp n p n p n   (8) 

where i  is an unique integer identifier. For the sum and 

difference features the same feature cannot be used twice 

 a b .  FOS can fit both positive and negative weights to the 

candidate terms, so only one difference between pairs ,a b  is 

required.   

The second order vector product candidates are the point-
by-point vector product of candidates as given by  

     i a bp n p n p n  . (9) 

Construct flows using 
NetMate and generate 

features using netAI

Collection and 
Preparation of Data

Filter port 443
traffic using tcpdump

Perform session 
initiation analysis 

using ngrep

Separate flows
by class

List of 
inclass IP 
addresses

Create sets for training 
and testing with equal 
numbers of inclass and 
outclass flow instances

 
Fig. 1 The collection of network data and generation of the flow features. 

 
Fig. 2 Feature Selection Phase 



 

 

Similarly, the third order vector product terms are given as the 
point-by-point product of three candidate function as  

       i a b cp n p n p n p n   . (10) 

Note, for the vector product terms, the square of features 
( a b ) or cube of features ( a b c  ) are allowed as features. 

For the sum, difference, and vector product features, only 
unique features generated by all combinations of  ,a b  are 

added to the candidate feature set. 

Building Feature Subsets Using the FOS Algorithm 

For each feature in the candidate matrix, the FOS algorithm 
calculates the resulting MSE reduction for each feature 
assuming it were the next fitted candidate. The candidate that 
produces the greatest mean squared error reduction is chosen as 
the next feature for inclusion in the model. Features are fitted 
to the model until one of the stopping criteria is met.  This 
subset of features selected by FOS is then used by the kNN 
classifier. 

The FOS algorithm can be biased when features are not of 
the same order of magnitude [26]. To avoid these errors, each 
feature was normalized to have zero mean and unit energy. The 
normalized features and corresponding ground truth array were 
the inputs to the FOS algorithm. 

Fig. 2 provides a graphical depiction of the feature 
selection phase, from building a candidate feature set, to 
building a subset using the features selected by the FOS 
algorithm. Note that the derived features are computed from 
the primary features and passed into FOS as candidate feature 
vectors. However, due to the large number of vector product 
features, the FOS algorithm computed the vector-product 
features as needed from the primary and derived features. The 
memory requirement for candidate features was significantly 
reduced by not precomputing all the vector product features. 
The mean and standard deviations used to normalize the 
training set candidate features can be saved and used to 
normalize the test set data in real-time. Alternatively, the set of 
test data can be normalized using the mean and standard 
deviation of the test set when batch processing network data. 

 

VII. VALIDATION 

In order to validate that the feature subsets chosen by the 
FOS algorithm have predictive value, their prediction accuracy 
was ascertained using the kNN classifier. Comparisons were 
also made between the prediction accuracy using feature 
subsets selected by the FOS algorithm against that resulting 
from subsets selected by the BeFS algorithm and the original 
primary feature set.  Fig 3 shows a flow chart of the validation 
phase. 

A. Receiver Operator Characteristics Curves 

The primary validation technique used was a comparison of 
the area under the curve (AUC) of receiver operator 
characteristics (ROC) curves. A ROC curve is a graphical plot 
of the true positive rate (TPrate) verses false positive rate 
(FPrate). The true positive rate is calculated by: 

rate

TP
TP

TP FN



. (11) 

and the FP rate is calculated using: 

rate

FP
FP

FP TN



. (12) 

The ROC curves are then generated by varying the 
threshold used in the predictor’s threshold detector and plotting 
the TPrate versus the FPrate. For the kNN classifier, the input to 
the threshold detector is the sum of the k reciprocal Euclidean 
distances for each instance.  

B. Detection Rate 

In addition to the AUC of the ROC, the detection rate, or 
the rate of correct predictions, was also used as a comparison 
metric. The detection rate is defined as the probability of 
correctly detecting, or classifying, flows and is given by: 

1 eDR P  . (13) 

where  

( ) ( | ) ( ) ( | )eP P inclass P e inclass P outclass P e outclass  . (14) 

If there are an equal number of inclass and outclass instances 

this equation can be simplified to: 

error

1 1
P

2 2
rate rateFN FP  . (15) 

C. Phi Coefficient of Association 

The phi coefficient of association, also known as the 
Matthews’ correlation coefficient, was also used as a 
comparison metric and is given by [27]: 

( )( )( )( )

TP TN FP FN

TP FN TP FP TN FP TN FN


  


   
 (16) 

where   is the phi coefficient of correlation, TP is true 

positive, TN is true negative, FP is false positive and FN is 
false negative. The phi coefficient is a value between −1 and 
+1, where a coefficient of +1 indicates a perfect prediction, −1 
indicates a complete disagreement between prediction and 
observation, and 0 indicates a random prediction. 

 
Fig. 3 Validation Phase 



 

 

VIII. RESULTS 

The feature selection and classifier training was conducted 
on 50,000 flow instances of the training dataset, while 
validation of the selected subsets was conducted on 50,000 

flow instances of the test dataset. The ROC curves, AUC,  
coefficient, detection rate and total number of errors were 
computed for each classifier using the previously unseen 
testing dataset. Each dataset contained 25,000 inclass and 
25,000 outclass flow instances. Feature selection was 
performed using four candidate feature sets, which are 
described in Table II 

The first dataset consist of only the 44 primary features 
listed in Table I.  The second candidate feature set consists of 
the primary features and all the unique pairwise sum and 
difference features given by (9) and (10). The third set includes 
the all the candidates from the second feature set and all the 
second order vector product terms given in (11). The final set 
includes all the features in the third set as well as third order 
vector product features given by (12). 

Overfitting occurs when the accuracy of prediction actually 
decreases when additional model terms are added during the 
training of the classifier. The predictor models the random 
noise of the training data but has larger prediction errors when 
presented with previously unseen data than without the 
additional model term. During feature selection it was found 
that the AUC values would rise to a peak in the range of 8 to 
12 features, and then slowly decline as additional features were 
added. The stopping thresholds of the FOS and the BeFS 
algorithm were chosen to prevent the overfitting of data. 

The FOS algorithm was run on each of these four data sets to 
select a subset of predictive features. The stopping conditions 
for the FOS algorithm were set such that: 

TABLE II.  SUMMARY OF FEATURE SETS 

Set Name Number  Description 

Primary 44 
38  netAI features 

6  rate features 

Derived 1893 
44  primary features 
1849  sum and difference features 

2nd Order 
Vector-products 

2839 
1893  derived features 
946  2nd order vector-product features 

3rd Order 

Vector-products 
16,083 

2839  2nd order vector-product features 

13,244  3rd order vector-product features 

- a maximum of 44 features could be selected; 

- each term fitted at least 1% of the energy in the target; 
- fitting was stopped if a term fitted no more energy than 

would fitting a WGN term; and 

- fitting was stopped when 75% of the energy in  y n  

was fitted. 

A. FOS feature selection with a kNN predictor 

A summary of the kNN predictor`s performance using 
feature subsets chosen by the FOS and BeFS algorithms are 
shown in Table III. The best performance for a kNN predictor 
was obtained using the 12 features selected from 2nd order 
vector-product feature set as shown in the highlighted row in 
Table III.  Compared to a kNN using all 44 features of the 
primary feature set, the kNN using the FOS selected subset 
resulted in 106 fewer errors using 32 fewer features and took 
81% less time to classify. Note: these experiments were run on 
a 2.2 GHz Intel Core i7 microprocessor and the time is used to 
compare the relative speeds of the algorithms. 

The first three rows of Table III  contain the result when 
only the primary feature set was used to select features with 
predictive value. The first row shows the results when all 44 
primary features were used by the kNN predictor without any 
feature selection. The FOS and BeFS algorithms both selected 
10 features when run on the primary feature set. The kNN 
predictors using the FOS and BeFS selected feature sets run 6 
times faster than the kNN predictor which uses all 44 primary 
features.   

The second and third rows of Table III show that with only 

10 features selected, FOS has a higher AUC, DR and  
coefficient than BeFS.  In addition, the FOS algorithm runs in 
1/3 the time of the BeFS algorithm. 

Table III also includes the kNN prediction results for 
feature subsets selected from the derived, 2nd order and 3rd 
order vector-product feature sets.  Note, the FOS algorithm 
created the cross-order features as required and didn’t require 
the cross-order features to be precomputed and stored.  The 
BeFS algorithm was not run on the 2nd order and 3rd order 
vector-product feature sets as we did not have enough memory 
to precompute and store all the vector-product features for the 
BeFS algorithm. For the kNN predictor using FOS selected 
features from the derived candidate set, the AUC is slightly 

lower but the DR and  are higher and total errors are lower 
than for the FOS selected feature selected from the primary 
features.  For the derived feature sets, the FOS algorithm is 
about 25× faster than the BeFS algorithm. Note the prediction 
results were better for the 2nd order vector-product feature set 
than the and 3rd order vector-product feature set even though 

TABLE III SUMMARY OF RESULTS 

 
Feature Selection kNN Classification Results 

Feature Set 
Selection 

Method 

Subset 

Size 

Time to 

Select 
AUC DR Phi 

Total 

Errors 

Time 

(min) 

Primary (44) 

 

None 44 - 0.9893 0.9646 0.9292 1772 18 

FOS 10 17s 0.9783 0.9457 0.8914 2716 
3 

BeFS 10 46s 0.9534 0.9143 0.8288 4285 

Derived (1893) 
FOS 12 57s 0.9773 0.9470 0.8941 2650 

3.5 
BeFS 12 ~25min 0.9433 0.9132 0.8266 4340 

2nd Order Vector-

product(2839) 
FOS 12 118s 0.9898 0.9667 0.9334 1666 

3rd Order Vector-

product (16,083) 
FOS 10 ~4min 0.9861 0.9568 0.9137 2160 3 

 



 

 

the FOS model had a lower MSE for the 3rd order vector-
product feature set. 

From Table III, we conclude that the FOS algorithm can 
efficiently (in time and memory usage) select a small number 
of features with strong predictive results from a large candidate 
set. The candidate set of features can include features that are 
the sum, difference and vector-product of the primary feature 
set. In addition, the kNN algorithm for 10 or 12 features is at 
least 5× faster than the kNN for the 44 primary features. Fig. 4 
shows the ROC curves for the kNN predictor using primary 
feature set, FOS selected features, and BeFS selected features 
from the derived candidate sets. The operating point of the 
kNN predictor is marked on each curve. It can be clearly seen 
that the FOS algorithm selects a subset of features with better 

predictive value than the BeFS algorithm. The DR and  
coefficients for the predictor with the FOS selected features are 
lower than when using all 44 primary features. 

Features are often chosen subjectively by an expert and 
may be highly correlated to each other. It may be impossible 
for an expert to select a subset of predictive features. Table IV 
lists the features selected by the FOS and BeFS algorithms for 
the primary, derived and 2nd order vector product feature sets 
respectively. 

Highlighted in Table IV are the two features that both FOS 
and BeFS selected from the primary candidate set. The features 
selected from the derived feature set are also shown in Table 
IV and it can be seen that all the features fitted by FOS and all 
but one fitted by the BeFS algorithm (max_bpktl) are derived 
features. 

In Table V, the MSE in the training data and the AUC, DR 

and  for a kNN predictor using the only the first N terms 
selected is shown.  For the derived feature set, a derived feature 
was selected by FOS first because it fitted more energy in the 
training set than any of the primary features.  Note that the 
MSE in the training set reduced as each term was selected by 

FOS.  In addition, the AUC, DR and  increased as each 
feature was selected.  Thus, the derived feature and vector 
product features have more predictive power than the primary 
feature set as can be seen in Table V. 

 

 

It is also worth noting that the BeFS and FOS algorithms 
did not select the same features and from Table III it can be 
seen that the kNN predictor with FOS selected features had 

higher AUC, DR and  coefficient values than the kNN with 
the BeFS selected features. 

IX. CONCLUSION 

This research presented a general-purpose technique for 
building reduced feature sets with high prediction accuracy for 
classification of encrypted traffic. This technique was shown to 
minimize the error of the classifier using a subset of features 
selected from a primary feature set. Feature selection was 
separated from the data classification process through the use 
of independent training and test datasets.    

It is acknowledged that the method was tested only on 
Dropbox traffic [8]; however, we postulate that equivalent 
successes would be achieved on other types of encrypted 
network traffic.  Also, if additional features are added to 
Netmate, they and their derived and cross-product features can 
also be searched by FOS. Other potential features may include 
those based on entropy or encryption schemes. As this work 

 
Fig. 4 The ROC curves for the kNN predictor for features selected by 

FOS for the Derived Feature Set. 

TABLE IV. FEATURES SELECTED BY FOS AND BEFS FOR THE PRIMARY, DERIVED AND VECTOR PRODUCT FEATURE SETS 

 
Primary Features Derived Features Derived and Vector Product Features 

FOS  BeFS FOS BeFS FOS 

1 std_fpktl total_bvolume mean_fpktl -max_fpktl max_bpktl mean_fpktl - max_fpktl 

2 mean_fpktl max_fpktl std_fiat -mean_biat proto - max_bpktl std_fiat - mean_biat 

3 min_active max_bpktl duration -std_active total_bvolume - total_bhlen max_bpktl × mean_bpktl 

4 duration min_fiat mean_fiat -std_biat min_fpktl - min_bpktl max_idle × std_active 

5 std_fit max_biat duration -max_idle min_bpktl - min_active mean_bpktl - max_bpktl 

6 mean_biat min_active proto -min_fpktl min_active - bpsh_cnt min_active - min_idle 

7 std_active std_active mean_fpktl -std_fpktl proto + max_bpktl max_idle × min_idle 

8 std_biat min_idle max_fpktl -std_bpktl proto + bpsh_cnt min_bpktl × min_fpktl 

9 std_bpktl max_idle max_bpktl +min_fiat mean_fpktl + max_idle std_active × std_bpktl 

10 mean_fiat fpsh_cnt max_fpktl -min_fiat max_fpktl+total_bvolume_rate  mean_fpktl - std_fpktl 

11 - - max_fiat -min_active max_fpktl + mean_fiat max_biat × max_bpktl 

11 - - min_idle -mean_idle max_fiat - mean_biat mean_fiat - std_biat 

 



 

 

primarily presented results for the kNN classifier, further work 
can be done measuring the performance of other classifiers 
(SVM, NN, decision trees) using the FOS selected feature sets.   
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TABLE V. Prediction metrics for a kNN predictor using features selected from the primary, derived and vector product feature sets 
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10 0.5109 0.9783 0.9457 0.8914 0.4996 0.9658 0.9309 0.8626 0.4220 0.9898 0.9643 0.9287 
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